Extensions 1→N→G→Q→1 with N=C23.D11 and Q=C2

Direct product G=N×Q with N=C23.D11 and Q=C2
dρLabelID
C2×C23.D11176C2xC2^3.D11352,147

Semidirect products G=N:Q with N=C23.D11 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.D111C2 = C22.2D44φ: C2/C1C2 ⊆ Out C23.D11884C2^3.D11:1C2352,12
C23.D112C2 = C23⋊Dic11φ: C2/C1C2 ⊆ Out C23.D11884C2^3.D11:2C2352,40
C23.D113C2 = C22⋊C4×D11φ: C2/C1C2 ⊆ Out C23.D1188C2^3.D11:3C2352,75
C23.D114C2 = D22.D4φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11:4C2352,78
C23.D115C2 = Dic11.D4φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11:5C2352,80
C23.D116C2 = C23.23D22φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11:6C2352,124
C23.D117C2 = D4×Dic11φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11:7C2352,129
C23.D118C2 = C23.18D22φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11:8C2352,130
C23.D119C2 = C44.17D4φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11:9C2352,131
C23.D1110C2 = C23⋊D22φ: C2/C1C2 ⊆ Out C23.D1188C2^3.D11:10C2352,132
C23.D1111C2 = C442D4φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11:11C2352,133
C23.D1112C2 = Dic11⋊D4φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11:12C2352,134
C23.D1113C2 = C24⋊D11φ: C2/C1C2 ⊆ Out C23.D1188C2^3.D11:13C2352,148
C23.D1114C2 = C4×C11⋊D4φ: trivial image176C2^3.D11:14C2352,123

Non-split extensions G=N.Q with N=C23.D11 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.D11.1C2 = C23.11D22φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11.1C2352,72
C23.D11.2C2 = C22⋊Dic22φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11.2C2352,73
C23.D11.3C2 = C23.D22φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11.3C2352,74
C23.D11.4C2 = C44.48D4φ: C2/C1C2 ⊆ Out C23.D11176C2^3.D11.4C2352,119
C23.D11.5C2 = C23.21D22φ: trivial image176C2^3.D11.5C2352,121

׿
×
𝔽